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The Use of ASN.1 and XDR
for Data Representation

In Real-Time Distributed Systems

Abstract: This report provides an overview of two standards that are used for
data specification and representation in distributed systems. The standards con-
sidered are the Abstract Syntax Notation One (ASN.1) and the external data rep-
resentation (XDR). Standards for data representation are appropriate for the de-
velopment of real-time distributed systems, particularly loosely coupled, heteroge-
neous systems. The report presents an example of the use of each standard.
Several performance metrics are also introduced that are suitable for comparing
the space and time costs of using the different standards. Several issues are dis-
cussed that are appropriate to a system designer. An Ada implementation of
ASN.1 encode and decode routines for floating point types is included in an ap-
pendix.

1. Introduction
Hard real-time systems are characterized by the presence of timing deadlines that must be
met to assure system correctness. In the case of a distributed system, the deadlines are
often characterized as end-to-end deadlines that involve multiple application programs. In
the process associated with an end-to-end deadline, a sending application encodes data in
some structure that a receiving application is able to decode. In the case of hard deadlines,
performance of a system in regard to data manipulation is an Important issue, particularly
when the system can be composed of heterogeneous machines.

This report examines two well-known standards for data specification and representation,
namely

"* The Abstract Syntax Notation One (ASN.1). ISO/IEC 8824 [2] defines the spec-
fication of ASN.1, while ISO/IEC 8825 [3] defines the basic encoding rules
(BER) that are used in the representation of data.

"* The external data representation (XDR), defined in reference [4].

The orientation of this report is more toward the methods used to represent as opposed to
specify data. For our purposes, data representation involves the encoding and decoding of
data, usually for transfer between system elements. Data specification involves the use of
some type of abstract syntax to describe data. While these are clearly related, we are con-
cerned more with the manner in which data is encoded and decoded by elements of a distri-
buted system.

This document is organized as follows: Chapter 2 presents an overview of the problems
addressed. Chapter 3 provides an overview of the ASN.1 basic encoding rules. The use of
the external data representation is considered in Chapter 4. A comparison of these two
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approaches is then discussed in Chapter 5, which also contains a discussion of issues re-
lated to the two standards. A brief summary of the report appears in Chapter 7. Throughout
this report, we use a representative example, that of a track update message, to illustrate
the various possible encodings. Appendices A and B contain the BNF specifications for
ASN.1 and XDR, respectively. Appendix C contains an example, written in Ada, of ASN.1
encode and decode routines.

The work reported in this documne-I was performed by the Open Systems Architecture Proj-
ect at the Software Engineering Li-stitute (SEI). The SEl is a federally funded research and
development center operated by Camegie Mellon University under contract to the Depart-
ment of Defense. This work was supported in part by the Navy Next Generation Computer
Resources Program.
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2. Overview

2.1. Problem Considered

A typical communication mechanism used in distributed systems is a remote procedure call
(RPC). This is illustrated in Figure 2-1. The client makes a request (a call) to a server. Part
of the request Is an indication of the procedure to be called. The server performs the re-
quested operation and then returns a response to the client, completing the procedure call.
Note that RPC may be implemented either synchronously or asynchronously.

Request

Response

Figure 2-1: Model of a Remote Procedure Call

The data exchanged in an RPC consists of two parts, as indicated in Figure 2-2. The first is
a protocol-specific component that conveys information about the protocol being used. For
example, in the case of the Sun RPC [5] the protocol component contains

"* An identifier that uniquely associates calls and responses.
"* A body that can be either a call body or a reply body. In the case of a call, for

example, the call body may contain the RPC version number, remote program
number, rennote program version number, remote procedure number, and au-
thentication information.

Protocol Component Data Component

Figure 2-2: Encapsulation of Protocol Information

The second component of the information transferred is a data component that contains the
information to be passed in the remote procedure call. In the case of the Sun RPC [51 and
the Versatile Message Transaction Protocol (VMTP) [6], the data component is represented
using the XDR standard [4].

CMU/SEI-93-TR-10 3



There are several performance issues to consider in the use of a RFC model. Of concern in
this report is the mechanism that is used to encode (and decode) the data component of the
RPC. Application programs require flexible representations that are also efficient in their en-
codings. Frequently, however, greater flexibility of data representations implies a more
complicated representation, which in turn requires more complicated encode (and decode)
routines. These more complicated routines are larger and require more processing time to
execute. As we shall see, the notions of flexibility and efficiency are not necessarily com-
patible.

2.2. Role of Standards

There is a current trend toward the increased use of standards in DoD real-time systems
developments. It is hoped that the use of standards will increase system interoperability.
When a standard contains more attributes than are believed necessary for the real-time
domain, a profile of the standard can be developed. For example, an embedded system
may not need all the functionality of a standard for a general purpose operating system.

Dkata representation standards such as ASN.1/BER and XDR, which are considered in this
report, are appealing in that they lend themselves to automatic code generation. For ex-
ample, one may create a data specification and then use a tool to automatically generate
the routines to encode and decode the data. The existence of such a tool would eliminate
the need for hand-coding the encode and decode operations on data structures.

2.3. An Example

A typical requirement of a real-time system is the need to perform track management.1 We
will consider the example of a track update message that can be exchanged by components
of a distributed system. This example will be used throughout this report to illustrate the use
of different data representation and encoding schemes.

2.3.1. Specification
A track update message can be transmitted when information about some track changes, or
on a periodic basis. Typically, this message would contain the following information:

* Message length: the number of words in the message (we assume a 16-bit
word).

"* Message ID: a unique identifier for the class of the message.
"* Track index: a unique identifier of the track being reported.
"* Positional information: the location of the track in some particular coordinate

system.

1A track represents the set of information about an object in the external environment. such as a radar report
of an aircraft.
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e Velocity information: the velocity components of the track. Note that these
components may be reported in a different coordinate system than that used to
specify the track position.

a Track category: an indication of the type of track, such as an air or surface
track.

e Maneuver indicator: an indication that the track is maneuvering. This informa-
tion is used in certain algorithms that estimate the state of the track.

9 Track quality: a measure of the quality of the position and velocity information
contained in the message.

* Sensor: an indication of the sensor that is reporting the information. Typically,
many sensors may be available, and it is necessary to know which particular
sensor is reporting the data.

* Clock: the time at which the track data was collected.

In reality, typical systems may report more information than that listed above. For our pur-
poses, however, the above list captures the essence of the data and will serve to illustrate
the issues associated with data representation. Although presented in the context of a mes-
saoq ii...rchange, the model may easily be extended to an RPC model where the requested
functoi, 'Is to update a remote track database.

2.3.2. Representation
The information that appears in the track update message is formatted in a predefined man-
ner as specified in some interface requirements specification (IRS). The IRS specifies not
only the format of the data, but the permitted range of values of the message components
and other information about the communication protocol that is used between systems that
exchange such data.

A typical representation of a track update message appears in Figure 2-3. The following are
to be noted about the data representation:

"* The number of words (NW) is a constant, having the value 12 (decimal), and is
contained in one byte.

"* The message ID (MID) is a constant, having the value 202 (octal), and is con-
tained in one byte.

"• The track index is represented as an unsigned integer having range 1 to 7777
(octal).

"* The X-Position (X) and Y-Position (Y) are fixed-point types with the assumed
(binary) decimal point located between bits 6 and 7 (we assume bits are num-
bered from right to left starting with 0). The units for these quantities are in data
miles.2 and the range is [-255 L27, 255 -!Q.

128 128

" The height is a fixed-point type with the assumed (binary) decimal place be-
tween bits 7 and 8. The height is reported in units of data miles and is in the
range [0, 255 ;_)-.

2One data mile is defined to be 6000 feet.
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0 NW MID

1 TRACK INDEX

2 X

3 Y

4 HEIGHT

5 X-VELOCITY

6 Y-VELOCITY

7 Z-VELOCITY
C M ! " r

8 TRACK QUALITY

9 SENSOR SOURCE

10 CLOCK (Upper)

11 CLOCK (Lower)

Figure 2-3: Structure of Track Update Message

" The velocity data is a fixed-point type with the assumed (binary) decimal place
between bits 12 and 13. Velocity data is reported in units of data miles per sec-
ond and is within the range [0, -r-49.

" The track category (CAT) is a Boolean; If TRUE, it indicates a surface track;
otherwise, It indicates an air track.

"* The maneuver(MVR) is represented as a Boolean; if TRUE, it Indicates that the
track is maneuvering.

"* The track quality occupies one byte and is represented by an integer in the
range from 0 to 100 with larger values denoting higher track qualities.

"* The sensor source is 10 bits wide, with each bit indicating a particular sensor.
For example, if bit 6 is set, the track data is being reported by sensor 6, which
we will label as SENSORG.

"* The clock is an unsigned integer value of the time that the data was collected.

6 CMU/SEI-93-TR-10



The time is reported in milliseconds in the range [0, 37777777777] octal. Note
that the high-order bit is used for data, not a sign.

There are two points about the representation of the track update message that are worth
noting. First, the representation seeks to minimize the amount of storage; for example, the
track category and maneuver request bits are packed in a byte and the sensor is
represented as an array of type Boolean, which is also packed. Second, note the number of
fixed-point types that are contained in the message.

The packing of data and the use of fixed-point types are typical of many existing systems.
This is in part due to concern over buffer management (perhaps at the expense of additional
processing time to decode and encode a message). The prevalence of fixed-point types is
frequently driven by hardware considerations; that is, data is presented directly from a
hardware device.

Finally, let us consider an instance of a track update message. Assume that track index 165
(decimal) is reported at a position given by (100.5, 67.75, 2.00) data miles with correspond-
ing velocity components (0.50, 2.875, 0.0) in units of data miles per second. Assume that
the track is an air track that is maneuvering, and that the track quality is 90 (decimal). Also
assume that the track is reported by SensorB at a clock time of 496 (decimal) milliseconds.
In this case, the actual bit stream for the track update message (in hex) would appear as

0C8200A5324021700200100058000000405A000200000170

The total length of the track update message, illustrated above, is 24 bytes. Of these, only
12 bits are not used in the representation of the message.

CMU/SEI-93-TR-10 7
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3. ASN.1 Basic Encoding Rules

3.1. Overview

The Abstract Syntax Notation One (ASN.1) Is an International standard for the specification
and representation of data. It is well known and used in other international standards. Be-
cause it Is an international standard, It is a natural candidate to consider for data specifi-
cation and representation.

An ASN.1 specification is encapsulated within a module. A module can Include an import
and export list to indicate references to types and objects declared In other modules. A mod-
ule can also contain definitions that can represent type declarations or value declarations.
Finally, an ASN.I module can contain macro declarations. A macro declaration can be used
to change the syntax of the ASN.1 specification language when an ASN.1 specification is
being compiled. Although unique in concept, use of the macro facility complicates the de-
velopment of a compiler for ASN.1 specifications. 3

It is Important to note that ASN.I can be used to produce very general specifications and
has significant expressive capabilities. In this report we will be concerned with only a subset
of the ASN.1 specification to illustrate its applicability to the real-time domain, which Is
predominated by certain data types. We will also be concerned with the ASN.1 specification
mechanism only to the extent that it is used in the example of the track update message.
However, the ASN.I specification grammar appears in Appendix A In a BNF form.

3.2. Encoding Scheme

The mechanism by which data is represented in ASN.I is defined as a set of basic encoding
rules (BER), specified in ISO/IEC 8825 [3]. These rules are used by the presentation service
pr-.ider in the ISO model. Each encoding consists of the following three Items:

1. Identifier
2. Length
3. Value

3 Rose discusses some issues regarding the mac. o facility [8]. This reference also contains a critical examina-
tion of ASN.1 in general.

CMU/SEI-93-TR-10 9



The structure of an encoding Is presented In Figure 3-1. The Identifier is encoded in one
octet and contains the following fields:

" Class: ASN.1 specifies 4 classes of encodings, namely, universal, application-
wide, context-specific, and private, which are encoded in the first 2 bits of the
identifier using the values 0, 1, 2, and 3, respectively. A universal tag is used to
define an application-independent data type that is of general use. An
application-wide tag is used to define an application-oriented data type that
needs to be distinguished from other data types. A context-specific tag Is used
to distinguish among alternatives of a data type, such as members of a set.
Finally, a private tag is used to define data types that are used in a limited
domain.

"* Form: An encoding may be primitive or constructed, depending upon the data
type. For example, an Integer is encoded as a primitive, while a sequence is
encoded in a constructed form, meaning that it is an encapsulation of encod-
ings. The encoding method, denoted by PC in Figure 3-1, is contained In one
bit, with primitive and constructed being denoted by 0 and 1 respectively.

"* Tag: The tag number is an indication of the data type.

IC P: Tag Length ... Contents ... I
Figure 3-1: Structure of an ASN.1 Encoding

The length is contained in one or more octets and denotes the number of octets of data
present. In this report we will be concerned with a definite form of length which is one that is
encoded in a single octet. Other forms are possible, including a specification of an indefinite
form where the length of the data is determined from special characters contained in the
data.

The value of an encoding, " referred to as the contents, contains the actual data. For
certain encodings, there may not be any values present.

3.3. Components

In discussing the encodings used in ASN.1, we will partition the ASN.1 data types into com-
ponents consisting of (i) primitive, (ii) constructed, and (iii) dual encodings. These are dis-
cussed in the following subsections.

10 CMU/SEI-93-TR-10



3.3.1. Primitive Components
A primitive component is one that is encoded as a single entity. The integer, Boolean,
enumerated, real, and null are included within this class and are discussed below.

3.3.1.1. Integer
An Integer is encoded using one or more contents bytes, represented as a two's comple-
ment binary number. The encoding is such that the contents field is encoded using the smal-
lest number of bytes. The universal class tag for an Integer is 2.

3.3.1.2. Boolean
The contents field of a Boolean is encoded using one byte. The value FALSE is encoded as
zero, and TRUE is encoded as any non-zero value. The universal class tag for a Boolean is
1.

3.3.1.3. Enumerated
The encoding of an enumerated type is the same as that of the integer value that is associ-
ated with the type. The universal class tag for an enumerated type Is 10.

3.3.1.4. Real
The representation of a real value may include one of the following: (I) the value zero, (ii) a
binary representation of a real value, (iii) a character-based decimal representation of a real
number, and (iv) certain special real values. The universal class tag for a real type Is 9.

The value 0.0 is encoded by setting the length field to 0. That is, there are no contents
octets.

If bit 8 of the first contents byte has the value 1, the encoding Is that of a binary represen-
tation of a real number. A real value is represented in the following form:

SN 2 F BE

where S is the sign, N is a number related to the mantissa, F Is a scale factor In the range
[0, 4), B is the base, and E is the exponent. The elements of the encoding are based on the
following:

"* The sign is contained in bit 7 of the first contents octet. The values positive and
negative are represented by 0 and 1, respectively.

"* The base is contained in bits 6 and 5 of the first contents octet and can have
the values 0, 1, or 2, denoting, respectively, base 2, 8, or 16.

"* The scale factor F is contained In bits 4 and 3 of the first contents octet and
directly represent a value I the range [0, 4).

"• The format of the exponent Is indicated in bits 2 and 1 of the first contents octet
and has the following interpretation:

"• If bits 2 and 1 have the value 00, then the second contents octet contains
the value of the exponent.

"• If bits 2 and 1 have the value 01, then the second and third contents octet
contains the value of the exponent.

CMUISEI-93-TR-10 11



"* If bits 2 and I have the value 10. then the second, third and fourth con-
tents octets contains the value of the exponent

" If bits 2 and 1 have the value 11, then the second octet specifies the
number of octets that are used for the exponent The actual value of the
exponent appears in the following number of octets.

"* In all cases, the exponent is stored as a two's complement binary num-
ber.

* The value of N is encoded as a binary integer in the remaining contents octets.

If bits 8 and 7 of the first contents byte have the value "00,0 the encoding is that of a
character-based decimal encoding. This is similar to an ASCII representation with the inter-
pretation of the remainder of the encoding being specified by certain international standards.

If bits 8 and 7 of the first contents byte contains the value "01,0 a special real value is
present. The two values defined by the standard are plus and minus infinity, encoded as the
bitstrings 01000000 and 01000001 respectively. When a special real value is present, there
will be only one contents byte. Other possible encodings are reserved for future use.

It may help to clarify matters to consider an example of an encoding of a real type. Con-
sider, for example, the interpretation of the hex string "090680E60ADFOA8B." The inter-
pretation of this is illustrated in Figure 3-2.

T L E N

1o: oIt00
XSB F Y

Figure 3-2: Example of a Real Type in ASN.1

The following are to be noted about the interpretation:

"* The first byte contains the tag T, which in this case is 9, representing a real
type.

"* The second byte contains the length L
"* The third byte contains the first byte of the contents and is interpreted as fol-

lows:

"* The first bit (bit 8) indicates that the real value is encoded in binary.
"• Bit 7 indicates that the sign of the number is positive.
"* Bits 6 and 5 represent the base B. The value of zero indicates base 2.
"* Bits 4 and 3 contain the value of the scale factor F, which is 0.

12 CMU/SEI-93-TR-10



- Bits 2 and 1 indicate that the exponent occupies one byte of storage.

"* The value contained in byte 4 denotes the exponent E; In this case, the value is
-26.

"* The last tour bytes of the encoding contain the value of N.

When the value of N is converted to decimal and multiplied by the factor of 2-26, the result is
the value of e, the base of natural logarithms.

It Is Important to note that there are multiple valid BER encodings for a real number. For
example, the value of e as discussed above could also be represented by the hex string
"0906817FE9ADF84D." In this case, the header indicates that the exponent Is represented
in two octets, with the remaining three octets representing the mantissa.

The encoding specified for a real type by ASN.1 does not relate to any specific hardware,
nor is the encoding based on any other standard such as the IEEE Standard for floating
point numbers [1]. However, it is stated In ISO/IEC 8825 [3] that the ASN.1 representation
was chosen to be easily converted to and from other formats. See Appendix C.

3.3.1.5. Null
An object of the null type is encoded such that the length field Is 0 and there is no contents
field present. The universal class tag for a null type is 5.

3.3.2. Constructed Components
A constructed encoding Is one In which the encoding comprises one or more data values.
Such encodings are used for structures and records, for example.

3.3.2.1. Sequence
ASN.I provides for specifying a sequence or sequence-of data types. The encoding encap-
sulates the encodings of the component data types. In the case of a sequence, the encod-
ing must appear in the same order as defined in the specification, but the sequence can
consist of many different data types. For a sequence-of, the order must also be preserved,
but all components of a sequence-of must be of the same data type. The universal class
tag for a sequence or sequence-of is 16.

3.3.2.2. Set
Similar to a sequence, ASN.1 provides for a set and set-of that represent an unordered col-
lection of objects. The encoding for the elements of the set can be chosen at will by the
encoder. Also, as with the sequence and sequence-of, a set can consist of components of
many different types, while a set-of consists only of components of the same type. The
universal class tag for a set or set-of will be 17.

CMU/SEI-93-TR-10 13



3.3.3. Dual Encoded Types
Certain of the ASN.1 types can be encoded using either a primitive or constructed form.
These are discussed below.

3.3.3.1. Bit String
A bit string is encoded as a sequence of zero, one, or more octets of data. The universal
class tag for a bit string type is 3.

3.3.3.2. Octet String
An octet string represents zero, one, or mode octets of data. The universal class tag for an
octet string type is 4.

3.3.4. Additional Points
The preceding has covered the basic components of ASN.1 types and associated basic en-
coding rules. It is to be noted that ASN.1 Includes additional items that may be useful to a
designer. For example, one can specify objects of generalized and universal time (although
they are encoded as character strings). ASN.1 also Includes subtypes and a macro facility
that is quite powerful; for example, one can extend the syntax of ASN.1. For further discus-
sion of the above items the reader is referred to ISO/IEC 8824 [2], ISO/IEC 8825 P], and
Steedman's ASN. 1: The Tutorial and Reference [9].

3.4. Example

The development of the ASN.1 specification is fairly straightforward. Thus, in reference to
Figure 2-3, we note the following:

"• The track update message is encapsulated in a module called track messages.
The use of a module specification in ASN.1 allows common data types to be
grouped together. In addition, modules can export, import, and reference speci-
fications defined in other modules; this Is an attractive feature of ASN.1.

"* The message itself is represented as a sequence. This implies that the encod-
ing of the message will be the ordered encodings of the message components.

"* The number of words, message type, track Index, track quality, and the value of
the clock are encoded as integers.

"* The track category and maneuver indicator are encoded as Boolean types.
"* The sensor type is specified as an enumerated type with the enumerated

values appearing in the specification.
"* The position and velocity data is represented as a string of octets. This choice

is made because ASN.1 does not provide for the specification of a fixed-point
type. This implies that a tool to decode the message would have to perform
special processing for the position and velocity data.

The ASN.1 specification is presented in Figure 3-3.
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SEQUENC I
NamE WORDS INTZGER (1 32767),
MESSAGE_TYPZ INTEGER (1 .. 32767),
TRACKINDEX INTEGER (1.. 511),
POSITION_AmDvELOCITYDATA OCTET STRING (SIZE (12)),
TRACKCACTEGORY BOOLKAN,
WiNUER INDICATOR BOOLEAN,
TRACKQUALITY INT•GZR (0 .. 100),
SENSOR ENUNERATED

(SeNSOR A - 1, SZNSOR,_ - 2,
SZENSOR_C - 4, SENSORD - 8,
SzNSOR._K - 16, SENSORV - 32,
SENSORG - 64, SENSORH - 128,
SENSORI - 256, SENSORJ3 - 512 ),

CLOCK INTEGER

Figure 3-3: ASN.1 Specification of Track Update Message

In terms of the values specified in Section 2.3.2, the ASN.1 encoding of the track update
message would appear as follows:

301r020C028202A•504103240217002 010005800000000100012JF
025A0A2 0201F0

The total length of the message in the ASN.1 BER encoding is 33 bytes. The representation
discussed in Section 2.3 required a total of 24 bytes.
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4. External Data Representation

4.1. Overview

The external data representation (XDR) is a standard developed by Sun Microsystems for
the description of data [4]. This standard is used in the definition of Sun RPC [5) as well as
the Versatile Message Transaction Protocol (VMTP), defined by Cheriton [6].

Some of the characteristics of XDR include the following:

"* A data representation carries no information about the data type. It is argued
that receivers know what data types are expected and that including such infor-
mation is not of particular use.

"• The data encoding is assumed to be a big endian format. This format is used
on IBM and Motorola machines, but not, for example, by the VAX family, which
uses little endian.

"* XDR assumes that all data are encoded as a multiple of four bytes. This
means, for example, that a Boolean object will be represented in terms of 32
bits.

Our interest is more in the data representation aspect of XDR. Appendix B contains a BNF
specification of the language associated with XDR. In the following subsections, we present
the components of the XDR representation.

4.2. Components

4.2.1. Integer
An integer iN represented as a 32-bit unit in the range [-2147483648, 2147483647]. The
integer is represented in two's complement notation. XDR also supports an unsigned in-
teger with values in the range [0, 4294967295]. In the latter case, the high-order bit is inter-
preted as data, not a sign bit.

XDR also supports a hyper integer and an unsigned hyper Integer type. These are exten-
sions of the integer and unsigned integer types, but they occupy eight bytes as opposed to
four.

4.2.2. Boolean
A Boolean is represented with the value TRUE as 1, and FALSE is represented as 0. In
each case, the object assumes 4 bytes.
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4.2.3. Enumerated
XDR supports enumerated types; an example of the syntax is as follows:

enum { RED - 2, BLUE - 12, GREEN - 15 ) colors;

The representation of an enumerated type is identical to that of an integer type.

4.2.4. Floating Point
The representation of a floating point type is that specified by IEEE 745-1985 [1] for normal-
ized floating point numbers. The representation includes the sign, exponent, and fraction,
described as follows:

"* The sign of the number is represented as one bit, with the values 0 and 1
denoting positive and negative numbers, respectively.

"* The exponent is represented in base 2 with a bias of 127. A total of 8 bits are
used to store the exponent.

"* The fraction is represented in base 2 and is stored in 23 bits.

The result of the above is that a (single precision) floating point number is described as:

(-)**S * 2**(Exponent - 127) * l.Fraction

The IEEE standard also describes special floating point types that may be included as part
of an XDR specification. Examples of this include signed zero and signed infinity (to repre-
sent overflow). XDR also provides for a specification of a double precision floating point
type that is an extension of the single precision floating point type, described above. The
double precision floating point is also represented according to the IEEE standard [1]. 4

4.2.5. Opaque Data
Opaque data is defined in XDR as uninterpreted data that is passed between machines. An
XDR specification may describe either fixed-length or variable-length opaque data. In each
case, the data is represented as a multiple of four bytes with additional zero-byte padding as
needed.

An opaque data specification can be used to describe data that will be processed by the
data rather than the presentation services. For example, a file can be encoded as opaque
data indicating that no operation is performed on the data by an automatically generated
tool. In this sense, opaque data can be used to hide the internals of the data representation.

'The IEEE floating point standard (1]. also specifies extended floating point types. These are not included in
the XDR specification.
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4.2.6. String
A string is represented in terms of unsigned integers and assumes the ASCII character set.
The first 4 bytes of the representation define the length of the string. A length declaration
may be omitted, in which case the maximum length of 2**32 -1 bytes is assumed. The data
follows the length specification and must be a multiple of 4 bytes.

4.2.7. Arrays
A group of homogeneous elements can be encoded in XDR as an array. The specification
provides for both fixed-length and variable-length encodings. In the latter case, the length is
included as the first four bytes of the representation, encoded as an unsigned integer.

4.2.8. Structure
A structure declaration in XDR is based on that defined in the C programming language and
has the syntax:

struct {
component-1;
component-2;

component-n;
) structure-name;

Each component of the structure is encoded in the order in which it is declared. The size of
each component must be a multiple of four bytes, although each component may have dif-
ferent sizes.

4.2.9. Discriminated Union
XDR permits a specification of a discriminated type, which is called a discriminated union.
An example of a discriminated union appears below:

enum { XTP = 1, OSI-CONNECTIONLESS = 2 }
protocol;

union switch (PROTOCOL)
{

case XTP:
/* XTP protocol data specification */

case OSI-CONNECTIONLESS:
/* Connectionless protocol data specification */}1;

The enumerated type specifies two different protocols, namely XTP and OSI Connection-
less, along with the particular values of each instance. Following this are the specifications
for each particular protocol instance.

The representation of a discriminated union consists of two parts. First, the discriminant is
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encoded in four bytes. The second part of the encoding Is the data for the specified dis-
criminant value.

4.2.10. Void
A void is a zero-byte quantity that can be used in XDR specifications. A void specification is
useful for operations that do not require any data as input or output, for example. It can also
be used to specify a null branch of a discriminated union.

4.2.11. Additional Points
The XDR specification also allows for the specification of constants, optional data, and iden-
tifiers used for declaring other data. These are discussed in [4].

4.3. Example

We now consider the XDR specification for the track update message, introduced in Section
2.3. The message will be represented as a structure whose components are the elements
in the track update message. The XDR specification is presented in Figure 4-1.

struct I
int NUMBERWORDS;
int MESSAGE_TYPE;
int TRACK INDEX;
opaque POSITIONANDVELOCITY DATA [121;
bool TRACKCATEGORY;
bool MANUEVERINDICATOR;
int TRACKQUALITY;
enum (SENSOR A - 1, SENSORB - 2, SENSORC - 4,

SENSOR D = 8, SENSORE = 16, SENSOR F = 32,
SENSORG - 64, SENSORH = 128, SENSORI - 256,
SENSORJ - 512 ) SENSOR;

unsigned int CLOCK;
T TRACK UPDATE _ZSSAGE;

Figure 4-1: XDR Specification of Track Update Message

The development of the XDR specification is fairly straightforward, for example:

"* The number of words in the message, message type, track index, and track
quality are represented as integers.

"* The track category and maneuver indication are represented as Boolean.
"* The sensor type is represented as an enumerated type with each sensor identi-

fied.
"* The value of the clock is represented as an unsigned integer.

There is, however, one issue in the use of XDR to specify the track update message. Sev-
eral of the quantities in the message are defined as fixed-point types, although XDR does
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not provide such a specification. We could have represented these as some other type,
such as an integer, but instead, chose to represent the fixed-point types in terms of opaque
data. Thus, as shown in Figure 4-1, the position and velocity data is simply declared as an
array of length 12 of opaque data. Recall, the use of opaque data hides the internal repre-
sentation of the data. In the present case, it would not be possible, for example, for an
automated tool to encode or decode opaque data.5

In terms of the parameters given in Section 2.3.2, the XDR-encoded track update message
would appear as follows:

0000000C00000082000000A5324021700200100058000000
0000000000000001000000AA00000002000001y0

The total length of the message, in the XDR form, is seen to be 44 bytes. Recall that the
storage required for the track update message, discussed in Section 2.3, only required a
total of 24 bytes.

5Strictly speaking, one could modify a tool to handle the fixed-point types. However, this is tantamount to
extending the definition of the XDR specification.
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5. Comparison of Approaches

5.1. Qualitative
A qualitative comparison of ASN.1 and XDR can be made based on the preceding as well
as the standards definitions contained in ISO/IEC 8824 [2], ISO/IEC 8825 [3], and the XDR
Standard [4]. The following points are relevant:

" The specification of ASN.1 is more expressive than that of XDR. This is
achieved, in part, through the use of modules, which allows for the application
ot modem software engineering practices. In addition, the presence of subtyp-
Ing multiple class tags also provides general capabilities to an application.
Also, the macro capability of ASN.I permits one to generr"a iew specifications;
in fact, one can redefine the syntax of ASN.I through this capability.

"• The data specification and representation capabilities of ASN.I are more gen-
eral than that of the XDR standard. The encoding of data in minimal length for-
mats, such as integer and Boolean types, conserves buffer space and may
have implications for network bandwidth allocation. It was noted in the text that
the real type declared by ASN.1 is not suited to any particular hardware repre-
sentation, and this further illustrates the generality of the ASN.1 approach.

Of course, an application could pay a significant price for the generality contained In the
ASN.1 specification and encoding standards. XDR maps all data onto 32-bit aligned bound-
aries, and employs current standards for floating point representation, such as the lEE float-
ing point standard [1]. Clearly, XDR is oriented toward systems in widespread use today and
seeks to achieve an efficient data representation.

Many factors are involved in a decision conceming the use of a data specification and repre-
sentation standard. One concem in the real-time domain, where end-to-end deadlines are
important, is that of performance. In the following section, we present some discussion of
quantitative measures to compare ASN.1 and XDR.

5.2. Quantitative
It is desirable to have quantitative metrics to compare ASN.1 and XDR. Such metrics can
help application designers in the selection of a data specification and representation stan-
dard. In the following two sections we present two simple metrics regarding buffer sizes and
processing times.

5.2.1. Buffer Sizes
Given a set of data to be encoded according to some specification, one concem is the
amount of storage required for the resulting data. The storage required is important be-
cause it contributes to the bandwidth required to transmit the data. In addition, a greater
amount of storage requires more data movement among components (for example, back-
planes and protocol chip sets).
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One applicable metric Is the ratio of buffer sizes for two representations. Let S(encodlng)
denote the required buffer size to encode data according to standard I. We then consider
the ratio:

S(ij) = Sec_____$( encodingj)

In relation to the example considered In the text for the track update message, let S(raw)
denote the size of the data as specified in Figure 2-3. Then, we have:

S(ASN1, raw) - 33/24 = 1.4,

S(XDR, raw) - 44/24 = 1.8.

and

S(XDR, ASNI) = 44/33 = 1.3.

In the case of the track update message, the use of the XDR representation nearly doubles
the size of the buffer required to store the message.

5.2.2. Processing Times
A second appropriate metric concerns the amount of time to encode and decode data. Let
T(i; k, ).) denote the amount of time to perform operation X. (encode or decode) on an object
of type k according to data representation standard I. We then define

7(1i j; k, X) - T(i; k, X.)
T('; k, T.)

to be the ratio of times to perform operation X on an object of type k for standards I and J.

It is not our intent here to perform a detailed investigation of T(I, j; k, 2.) because such results
are influenced by:

"* Design method (automated or hand-coded, for example).
"* Implementation language.
"* Target machine (underlying Instruction set architecture).

To illustrate an application of the encode times, consider the case of an integer such that Its
value can be represented In 32 bits. An estimate of T, expressed in terms of number of
machine Instructions, would give

T(XDR; integer; X) = 2.

In other words, a 4-byte Integer could be encoded or decoded In two Instructions. This es-
timate assumes one Instruction to fix a pointer at the address and the second Instruction to
move the 32 data bits. Recall that the XDR specification requires boundary alignment of 4
bytes on each data type.
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A corresponding estimate for the case of ASN.1 would be roughly

T(ASN.1; integer; X) - 7,

where the majority of the instructions are used to extract (and verify) tag and length Infor-
mation. The preceding Indicates that decoding a 32-bit integer requires about 3 times as
many instructions in ASN.1 than in XDR. In the case of a floating point value exchanged
among machines that conform to the XDR standard (that is, that employ the IEEE floating
point standard representation [1]), in XDR the data could be encoded in 2 instructions. An
estimate for ASN.1/BER encode and decode routines appears in Appendix C. There, it is
illustrated that the encode and decode operations, using ASN.1 BER, are considerably more
expensive than when done in XDR.

The inclusion of tag information in the ASN.1 encoding must be accounted for in any perfor-
mance metric to encode or decode data of a particular type. To some applications, this
could be viewed as unnecessary overhead.

5.2.3. Space and Time Tradeoffs
It is possible to combine the buffer size and processing time metrics, resulting in a
composite metric. Such a metric would convey, in a simple manner, the two metrics intro-
duced above. To this end, define

S' S(i, j),

and

T'= T(i, j; k, X).

The composite metric is obtained by displaying data In the S'-T' plane. An example of this is
presented in Figure 5-1 where i and j correspond to ASN.1 and XDR, respectively. The
point labeled x in this figure represents the values of S' and T' for a 32-bit integer. In this
case, ASN.1 requires about 0.75 times the buffer space of XDR. However, as noted above,
ASN.1 requires about 3.5 times the amount of assembler instructions to decode the data.
The shaded area in Figure 5-1 is that domain in the S'-T' plane for which the representation
specified by standard i is more efficient, in space and time, than that specified by standard J.

We are unaware of any detailed metrics for comparing ASN.1 and XDR, nor are we aware
of any type of benchmark suite that would seek to compare these standards. We believe
that the existence of such work would help to establish quantitative results that application
systems need in order to complete a detailed performance estimate of the impact of using
either of the standards discussed here. A similar approach to that outlined above is easily
seen to apply to other data representation standards.
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Figure 5-1: A Sample Composite Metric

5.3. Issues

5.3.1. Typing Considerations
A major difference between ASN.1 and XDR data representations Is that the former carries
type information while the latter does not. The utility of type information Is an Issue. For
example, many systems are expecting data of a predefined type and to encode the type
Information requires additional storage as well as processing time.

Neither XDR nor ASN.1 Include any provision for fixed-point types. This was noted In the
examples considered, where it was necessary to encode fixed-point data In some other
form. In the case of the XDR specification of the Track Update Message, for example, the
position and velocity data were encoded as opaque data. The failure of a specification to
support a particular type has Implications for the ability to automate the processing of appli-
cation data.
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5.3.2. Byte Ordering and Alignment
The XDR specification requires a big endian byte ordering. This form is used in IBM and
Motorola class machines. However, the VAX family uses a little endian byte ordering.

The criteria for byte alignment may be important in system considerations. The XDR specifi-
cation is based on a four-byte wide representation, while the ASN.1 specification is of vari-
able length.

5.3.3. Use of Other Representations
This report has considered the use of the ASN.1 Specification and basic encoding rules and
the external data representation. Both of these are well known and widely used in distributed
systems. There are other systems that address similar issues as these which deserve con-
sideration. A notable case in point is the interface description language (IDL) developed by
Nestor et al [7]. Although originally intended for use in compiler technology (IDL is the de
facto intermediate representation for Diana, which is used in Ada compiler technology), IDL
applies to the problems considered in this report. In fact, IDL provides capabilities not found
in either of the systems considered.

5.3.4. Automated Tools
If one were to use a data specification and representation standard, such as ASN.1, XDR, or
IDL, it would clearly be advantageous to have automated tooling to support encode and
decode operations. Such a tool would allow a designer to specify the data, and the tool
would generate the encode and/or decode routine. There are such tools available for each
of the above three specifications.

5.3.5. Revisions to ASN.1
During the preparation of this report, we became aware of changes that are being proposed
to the basic encoding rules to ASN.1, ISO/IEC 8825 [3]. These Include the following:

"* A set of packed encoding rules (PER) that results in a more compressed en-
coding than ASN.1 basic encoding rules. For example an Integer in the range
(100 ... 103) can be encoded in the PER using 2 bits. This is achieved by add-
ing an offset of 100 to the encoded value, thereby requiring less storage than
that for a basic encoding.

"* A set of canonical and distinguishing encoding rules that are based on the basic
encoding rules. These encodings would require, for example, that a Boolean
be encoded as 1 if the value were TRUE and 0 If FALSE (recall the BER state
that a Boolean having the value TRUE can be encoded as any non-zero value).
The advantage of a canonical and distinguished encoding is that it standardizes
the encodings of certain elements.

"* There is also some possibility that a set of light weight encoding rules (LWER)
will be standardized. These are intended to be faster to encode and decode
than the basic encoding, although the encodings may require more storage.

It is our understanding that the first two encodings listed above are draft international stan-
dards, while the LWER is under consideration.
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6. System Design Considerations

Although this report has focused on the data representation issues, the question of data
representation exists in a larger context. In particular, the use of data representation ser-
vices (such as encode and decode) represent a part of the execution time expended in sup-
port of end-to-end deadline processing. In the following, we examine some system con-
siderations related to this larger context.

6.1. Analysis

We will now present a simple analysis of the contribution to the end-to-end completion time
in the case of heterogeneous systems. For such systems, we assume that a data represen-
tation scheme, such as ASN.1 BER, is used. In the case of a peer-to-peer communication,
there are two contributions to the end-to-end c~ompletion time that must be considered,
namely

"* The time for the sender to encode the data before message transmission.
"* The time for the receiver to decode the received data.

Consider the case in which a message is transmitted at a periodic rate R times per second.
Assume that the message can contain ni values of data of type -. For example, one could
delineate the set whose elements represent integer types, Boolean types, floating point
types, etc. To account for the encoding and decoding times we define

I elcP to be the time required to encode a data type i on processor p.

I iP to be the time required to decode a data type ion processor p.

The inclusion of the subscript p in the above is to distinguish that the times to perform
encode and decode operations are processor-dependent.6

Based on the above, the contribution to the end-to-end completion time T is given by the
following expression:

T = R ni (• + ei-c)

It is possible to extend the development of the formalism in a natural manner. For example,
it can be developed for a specific message type or be extended to include worst-case times
for processing messages that are transmitted in a multicast manner. We will not explore
further development of the formalism here. Rather, our intent is to be able to illustrate the
impact of encode and decode operations in a heterogeneous context.

eThere are also compiler and language dependencies, but they need not be included for purposes of the
current discussion.

CMU/SEI-93-TR-10 29



6.2. Example

We now consider an example of the formalism developed above. Consider the case of the
track update message, described in Section 2.3. We will assume as part of the transition to
an open system architecture that the fixed-point data in the message are replaced by float-
ing point types, of which there are six (three for position data and three for velocity data).
Based on the results in Appendix C, we use the following values for floating point types:

; Jec= 74.0 Wxsec

= 365.0 pec

Approximately 83 percent of the total encode/decode time is spent in the decode operation.
Applying the above formula for the time required to encode and decode a floating point type
Tfp, we have

T= 6(74.0+365.0)R llsec

= 2.634R msec

The above result Indicates that approximately 2.5 msec are required to encode and decode
the six floating point type values contained In the track update message. Of this, approxi-
mately 0.5 msec is required for the encode operation, and 2.0 msec for the decode opera-
tion. The results indicate an upper bound of about 380 messages per second not counting
other network effects (physical transmission rates, protocol layer processing) and also not
counting the time to encode and decode the other data types in the message. Furthermore,
when one examines the number of track update messages sent per second for each track, it
is apparent that the total processing time for encode and decode operations is
considerable. 7

6.3. Alternatives

It is apparent that the results presented above and in Appendix C may cause concern to
some systein designers. Clearly, the amount of time required to perform data transfor-
mations because of concerns about heterogeneity can be substantial. The case in which
the communicating peers are components of a homogeneous system does not present the
problems of the heterogeneous case. We now briefly consider some of the issues from a
system development standpoint.

7For a network that can support a bandwidth of one megabit per second, this implies that the time spent in
encoding and decoding the floating point values in several hundred track messages is equal to the time it takes
to move one megabit of data. Note the throughput implications for system bandwidth.
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6.3.1. Role of the Interface Requirements Specification
As background, let us note that systems typically contain documentation describing the way
that data is exchanged among system components. Such documentation is often contained
in an interface requirements specification (IRS), or an interface design specification (IDS).
To examine issues of heterogeneity, it is interesting to examine the role of an IRS in a par-
ticular context. Toward this end, we define the following:

"* An IRS is unconstrained if the specification of data elements is independent of
a particular hardware architecture.

"* An IRS is constrained if the specification of data elements is dependent on a
particular hardware architecture.

For example, in an unconstrained form of the IRS, an element of a message may be speci-
fied as a floating point type. In contrast, in the case of a constrained IRS, the same data
type would be specified in terms of a particular representation, such as the IEEE format.
Since it hides implementation knowledge from the communicating systems, an uncon-
strained specification may be more suited to use in heterogeneous systems.8

6.3.2. Design Approaches
There are two basic approaches for dealing with the problems of heterogeneous communi-
cation and data representation. In the first case, one may want to apply a standard, such as
ASN.1 BER. One consideration is to optimize the procedures that perform the encode and
decode operations. As noted in Appendix C, Ada was used for purposes of readability. It is
clear that one may be able to optimize the encode and decode operations by using as-
sembler language, for example. However, it is not clear how much improvement would
result from the use of assembler language.

The second approach is to develop application-specific protocols. For example, a message
can be defined in the following manner:

Message::=
architecturetype;
seq.of {messageelements};

end Message;

where, for example,

architecture type ::= {sparc, motorola68K, intel};

denotes the hardware architecture that is used to represent the message components and
the (messageelements) denotes the set of message elements, such as float, integer, and
enumerated. Note that the above specification is presented in an unconstrained form, since
the representation of floating point type is not defined.

8The fact that an IRS may also contain permitted ranges of values does not affect the notion of constrained
and unconstrained specifications.
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To illustrate the utility of application-specific protocols, consider the case in which applica-
tion Ai sends messages to application Aj. We assume that the hardware architecture of Ai is
different from that of Aj. From the perspective of the sending application there are two
choices, namely

"* Application Ai encodes the data in its native (hardware) representation. This
eliminates the encoding time required if a standard, such as ASN.1 BER. were
used. When application A. receives the message, it performs the decode
operations from architecture Ai to its hardware architecture.

"* Application Ai encodes the data in the hardware architecture of application A.
In this case, when the message is received by Ai there is essentially no time
required to decode, since that conversion was made before the transmission of
the message.9

The utility of application-specific protocols is based on knowledge of underlying hardware
architectures. 10 This is in contrast with the use of ASN.1 BER and similar representation
schemes, which do not assume any knowledge of hardware architectures.

The preceding has only touched on several issues that must be addressed when one is
concerned with data transfer in heterogeneous systems. 11 For those systems in which per-
formance considerations are critical, it is important to recognize the tradeoffs in the ap-
proaches to data representation.

9Note however, if a message is transmitted in a multicast manner where there are two receiving applications,

each of which has a different hardware architecture, further problems must be addressed.
1°This assumes that message elements are represented in native format for a particular hardware architecture

and therefore, fixed-point types would be precluded, for example.

"We mention that a hybrid approach is also possible that essentially encapsulates a constrained specification
in an opaque type.
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7. Summary
The ability of a real-time system to satisfy end-to-end timing deadlines can be influenced by
many factors. One such factor is the encoding and decoding of data, by an application task,
which is then transferred to a component of a distributed system. To assure that deadlines
can be met, real-time systems require timely processing of application data.

It is clear that the use of standards in the development of real-time distributed systems is an
important issue. This report has examined two such standards, namely the Abstract Syntax
Notation One (ASN.1) and the external data representation (XDR), in regard to data repre-
sentation. Each of these standards has unique characteristics that may make it applicable to
the real-time domain. Several issues are pointed out to help a designer determine the ap-
plicability of these and other standards to the issues related to data specification and repre-
sentation for the real-time distributed domain. The BNF for ASN.1 and XDR, as well as an
Ada implementation of ASN.1 BER encode and decode routines for floating point numbers,
are included in Appendix C.
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Appendix A: ASN.1 BNF
<as sirauent> :- <type assignment> <CR> I <value assignment> <CR>

<external type reference> :- <module reference>'*
<type .reference>

<module-reference> ::- <identifier>

<type_ýreference> :: <identifier>

<external value reference> ::- <module-reference>'*
4<value 'reference>

<value-reference> :- <identifier>

<defined type> ::- <external type r:eference> I <identifier>

<defined value> :- <external value reference>
<value ref erence>

<type_ assignmsnt> ::- <identifier> ': :=' <type>

<value assignment> :- <identifier> <type> '::-' <value>

<type> :: <builtin type> I <defined type> I <subtype>

ý<builtin type> ::- <boolean type> I <integer type> I
:ZbitstriLng_ type> Z octet -string_ type> I <null type>I
<sequence type> I<sequenceof type> I
<set type> I <setof type> I <choice type>
<sel~ection type> I <tagged type> I <anyJtype> I
<object ide~ntifier type> I <character string t:ype>I
<useful~type> I <enumerated type> I <real type>

<named type> ::- <Identifier> <type> I <type> I <selection type>

<value> :: <:builtin, value> I <defined value>

<builtin value> :: <boolean,.value> I <integer value>
:Zbitstringi value> I
<octet-string yvale> I <null value> I <sequence value>I
<sequenceof value> I <set value> I <setof value> I
<choice val~ue> I <selecti~on value> I <tag-gedý value>
<any_val.ue> I <object-identifier val.ue> I

<chracerstring value> I <enumerated val.ue>
<real. value>

<named value> =<identifier> <value> I <val.ue>

<boolean type> ' OOLKAN
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'Cboolean value> -'TRUE ' ALSE

<inteqerý type> : NTEGER I
' NTEGER {'<named numb.: list> '

<named number list> :- <named. nu~mbr> I
<named- number-list>',' <named number>

<named number> :: <identifier> ''<signed number>')
<Identifier> ''<def med value>')

<enumerated type> :: I (IMIRAE <enumeration>')

<enumeration> :- <n ame d number>
<enumeration> ',7' <named number>

<enumerated vaJlue> :: <identifier>

<real type> -'REALI

<real value> :-<numeric real val.ue> I <special real value>

<numeric real vaJlue> :- I(' <mantissa> ',' <base>',
<Zexponent> I)' 1 0

<mantissa> :- <signed number>

-<ase> ::= 2 1 10

<exponent> :: <signed number>

<special-rea~l value> ::- I PLUS-INFINITY 'I'MINUS-INFINITY

<bitstring type> ::= I BIT STRING' II
IBIT STRING (I <named bit list>''

<named bit list> ::- <named bit> I
<named bit list> ',' <named bit>

<named bit> :- <identifier> I(' <number>''
<identifier> '(' <defined value>')

,<bitstring value> ::- <bstring> I <hstring>
I'U <identifier-list> ''I<eqWty_list>

<identifier-list> :- <identifier>I
<identif ier list>',' <Identifier>

<octet string~type> -'OCTET STRING'
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<octet String value> :: <batring> I <hstring>

<null type> M ULL

<nul.l value> - N=L

<sequence ýtype> ::- I SEQUENCE (' <element type-list> ')'

ISEQU=Cz 01

<ele2met type list> :=<element type>
<element type list> I, I< element type>

<element type> :: <named type> I
<named type> 'ORTICNAL

<named type> 'DEFAULT '<value>

ICOW0NENTS OF I <type>

<sequence value> - I'f' <element value-li at> ''I<euptyjlist>

<element. value list> : :- <named value> I
<eoleme-nt value list> I, - <named value>

<sequenceof type> -'SEQUENCE OF I <type> I 'SEQUENCE

<sequenceof val.ue> If' <value list> ''I <empty list>

<value list> :-<value> I <value list> ,'<va3lue>

<set type> :-'SET (I <element type list> )'I'SET

<Set value> :-''<element value list> ''I<eoqptylist>

<setof type> :-'SET OF I <type> I'SETI

<setof val.ue> I (' <value list> ''I <empty list,>

<Choice type> :-'CHOICE 11 calteznative, type list>')

<alternative -type_list> ::- <named type>
<alteiinative typelist> ' <named type>

<choice value> :: <:named. value>

<selection type> :: <identifier> 1<1 <type>

<selection val.ue> :- <named val.ue>

<ta9ged .type> ::- <tag> <type> I
<tag> ' IRLICIT '<type>

<tag> ' EPLICIT '<type>
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<class> : -' EVZZSAL 'I A11LICA!ZO '

IXXVIJIM I hpsILCE

<class number> ::-<number> I <defined value>

<tagged value> :-<value>

<any_:typet> ANY I I
AMY DIVIE BY I <identifier>

<any. al~ue> :-<type> <value>

<ob ject identifier type,> : -' 33CT IDTIYIUR

<object-identif ier value> If-'' <obid doopcnent _list>')
It' <define-d value> <objAid compconet l1ist> ')'

<objidoompoqnen~tIst> ::= <cbj~id.cuqponent> I
<obj_id_qcmp~onent> <obj~idco~pouent list>

<objidompcoqnent> ::- <nam*form> I <numez formi>
<rn as and number-farm>

<nameform> :: <identifier>

<number form> :: <num~er> I <defined value>

<nmand nuxier form> :-<identifier> I', <number form> )

<Character string type> ::= 'NumericString' I 'lrintableftring'
T2eletezString' I'Visibleftring' I 'Infttring'I
'Graphicftring' I'Generalftring'

<character string value> : : <ostring>

<useful type> :: <identifier>

<integer va3lue> :: <signedpnibex> I <identiflier>

-- SVRTYPI? DXCAIANTICKS

<subtype> : :- <aettype> <subtypes_.pec>
SIT I <size-constraint> ' (W <type> I
SZQVIWCK I <size constraint> 'r I1 <type>

<parent type> ::= <type>
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<subtype spec> IV'( <subtype cluse> I)'

<subtype cOlause> :- <subtype vslue et> <subtype value st lIst>

<subtype-value set list> ::- 'I' <subtype-value-set>
<subtype value-set list> I 315 ILOK

<subtype_.al3ue set> ::- <single value> I
<contained subtype> I <v;alue conge>
<permitted alxphabet> i <size, constraint> i
<inner type_ constraiLnts>

<single value> :: <value>

<contained subtype> :: I INCLUDES' <type>

<value range> ::- <lower endpoint> .. I <upper"ndpoint>

<lwrendpoint> :-<lower end value> I <lower end value> <I

<upper ndpoint> -<upperý end value> I 1<' <upper end value>

<lower end value> -<value> I C ' I,

<upper and value> -<value> MI I

<size-constraint> :'SIZE <subtype-spec>

<permittedjalphabet> - R I NO <subtype_ spec>

<inner type constraints> =
WITH CWOMOENT '<single type constraint> I

'WITH CWOMPOENS <multiple type_ constraint>

<single type_ const raint> ::= <subtype spec>

<multiple type constraint> ::- <full,_specification>I
<part ±al,_specif icat ion>

<full specification> :-''<type constraints> I)'

<partial-specification> - ' ... , I<type cponstraints>''

<ty"pe onstraint s> :- <named constraint> I
<named constraint> ',' <type_ constraints>

<named constraint> :: <identifier> <constraint> I <constraint>

<constraint> :- <value constraint> <presence-constraint>
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<Value o~natz-Ant> :: <subtype spec> I PSXLOSI

<pesence constraint> : RSN : 11W!'I' 513
0OWTXOEAL 'I PSILON

<signed number> :- <number> 1 '-' <number>

<identifier> : :- <uppercase letter> <mrs-characters>

<uppercase-letter> : :- <RANGE: 'A' .. E' >

<move-characters> ::- <letter> I EPSILON

<letter> :-<RANGE: 'a' 1z1> I<uppercase-letter> '-I

<digit>

<digit> ::n0 1 1 1 2 1 3 I4 1 5 I6 1 7 1 S 1 9
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Appendix B: XDR BNF
<XDR Spec> -<XDR Dofn> <CR> <more )MR Defn> <Ca>

<)MR Defn> -<type-defn> I <constant_4gmn>

<zuore-)R dafn> :- <xdr defn> I EPSILON

<type- defn> ::- 'typedef I <deal> ';f'

'6nm, I <identifier> <enum body>''
'striact. I <identifier> <struct body>';
'union I <identifier> <union body> '

<deal> ::= <unit decl> <identifier> I
<fixed lengthý unit_array>I
<variable -lengthkunit-array>
<opaque_spc>I
<striLng_ spec>I
<void4spec>

<unit deal> ::- <integer deal>I
<float deal>I
ý<bool~a-n decl>
<enuzzurated deal>I
<structure deal>I
<union-spec>I
<identifier>

<integer deal> ::- <integer> I <unsigned integer> I

<hyperýýinteger> I <unsigned. hyper integer>

<integer> ::'litI

<unsigned~integer> :- 'unsigned mntI

<hyper_integer> :- 'hyperI

<unsigned.hyper ý.integer> :- 'unsigned hyperI

<float deal> ::- <single float deal>I
<double float decl>

<singleý-float-deal> -'float

<double float deal> - double'

<boolean deal> :- 'bool. I

<enumerated. deal> : enum, I <enum body>

<enum body> =''<enum clause>
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<other enum clause>

<@nun clause> -<identifier> '- I <Integer constant>

<other enum clause> :: ', 1 <enum clause> I EPSILON

<structure deci> -<CR> 'struct. I <struct body>

<structý body> - '<struct ,clause>
<other struct clause> I

<struct clause> :<deal> ';'

<other struct-clause> :: <struct-clause> I EPSILON

<union-spec> :: 'union ' <union body>

<union body> ::- ' switch (' <identifier> I)'
'<union clause> <more union-clause>
<defaul-t-clause> I)'-

<union-clause> -<CR> 'case '<length> ' '<decl> ';'

<more union clause> :- <union Clause> I EPSILON

<default clause> ::= 'default I <deal> ';' 1 EPSILON

<fixed lengthbunit_array> :- <unit decl> <identifier>
<fixed length,_spec>

<fixed. length_spec> ' '<length>''

<length> ::= <positive-integer> I <identifier>

<vamiable-length unit-array> :- <unit decl> <identifier>
<variable-length_spec>

<variable length _spec> :-' <' <optional-length> '>'

<opt ional-length> :- <length> I EPSILON

<opaque_spec> :- <f ixed length oaqueý_spec>
<vamiable length, opaque _spec>,

<fixed length oaque_spec> :- 'opaque I <identifier>
<fixed length_;spec>

<variable length oaque_spec> ::='opaque ' <identifier>
<variable length _spec>

<string"spec> :- 'string ' <identifier>
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<variable*lengthspec>

<void_8spec> : I:i 'void'

<constant deafn> ::- 'const ' <identifieo> ' -
<integer-constant> ';'

<integer constant> ::m <PAGZ: -2147483647 2147483647>

<positive integer> ::- <RANGZ: I .. 2147483647>

<identifier> : <letter> <other character>

<letter> ::<RAhNGZ: 'a' .. 'z'> I <RANGZ: 'A' .. IZI>

<other character> :-: <letter> I <digit> I '

<digit> ::-0 I1 1 2 3 4 5 6 7 8 1 9
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Appendix C: ASN.1 BER Encode and Decode Routines
in Ada
Performance is a critical issue in real-time systems. As shown earlier in this report, ASN.1 is
a very general and powerful technique for communication in a heterogeneous distributed
system. The purpose of this appendix is to explore, by means of an example, the computa-
tional cost of the generality of the ASN.1 BER. We hope to illustrate exactly what can be
involved in the euicoding to and the decoding from an ASN.1 representation, using the BER.

We selected the ASN.1 primitive type real as an example, as it appears to be the most
complex of the ASN.1 primitive types. We further chose to implement the encode and
decode routines in Ada. While more efficient implementations might well be possible in
another language, such as assembler, we are more interested in illustrating the issues in-
herent in the use of ASN.1. As Ada is probably more widely understood than Sparc2 as-
sembler language, we feel that Ada is the more appropriate choice. Further, we make no
claims concerning the optimality of our code. We did not explore alternative Ada implemen-
tations. It is therefore quite possible that more efficient Ada implementations of the encode
and decode routines are possible. Again, our purpose is to obtain a general idea of the pos-
sible computational costs of the generality of the ASN.1 BER.

Our implementation (included in this appendix) consists of a main program which we call the
driver. To decode, the driver examines an ASN.1 encoding, determines the type and overall
length of a component, and then calls the appropriate decode routine. To encode, the driver
determines the type of the object to encode, and then calls the appropriate encode routine.
Our driver, encode, and decode routines are implemented on a SPARCstation 2 using the
self-hosted Verdix Ada compiler (VADS 6.03d).

As our purpose is to identify performance concerns inherent in the use of ASN.1 BER, we
have accepted certain limitations on our implementation. For example, the encode and
decode routines are implemented only for the shortfloat type (32 bit IEEE-754 float), and
do not consider the cases of NaN (not a number), or plus or minus infinity. Only the ASN.1
binary encoding for reals has been implemented (a decimal/character encoding also exists).

The major criterion for the success of our encode and decode routines is the ability to en-
code a float, decode that encoding, and then verify that the resulting float is equal to the
original float. This is done using both Ada float_io and formatted bit displays of the encod-
ings and floats (see Figure C-1).

Real ---- PFloat_10 Deco Float_10
Number ((Read) [ d eerite)

Figure C-1: Testing of Encode and Decode
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There are several limitations of our testing of the encode and decode routines. We have
only considered "reasonable* encodings of floats; that is, encodings that use the minimum
number of octets to encode the exponent and mantissa of the represented real number.
Another limitation of our testing is that we have not tested the encoding and decoding of
numbers with bases other than two, although the routines are written to handle those cases.
Finally, the encode and decode routines have not been tested across different machines or
between different ASN.1 users.

The encode and decode procedures were compiled using three different compilers: the self
hosted Verdix 6.03d compiler, the Vax Ada V2.3-3 compiler, and the XD Ada V1.2-23 com-
piler. The resultant code sizes for the encode and decode routines are shown in Table C-1.
It is apparent that the assembler code generated is quite large. In each case, the compi-
lation was performed with optimization of time as opposed to space.

Function Vendor A Vendor B Vendor C

Encode 130 215 76

Decode 295 449 236

Table C-1: Generated Code Size for Encode/Decode Operations

There are several points to be made about the results presented in Table C-1.

" The results do not indicate of the relative merit of the compilers tested. The
compilers represent different target architectures; for example the Sparc is a
RISC machine, while the others are CISC machines.

" The generated code sizes do not account for the driver code that determines
which routine should be called. Such generated code is expected to consist of
less than 15 instructions.

" The generated code sizes do not include the elaboration code. Based on the
number and types of local procedures and declarations, we expect that the
elaboration code size for the decode routine would be at least three times
greater than that of the encode routine.

" The decode procedure contains a statement that generates a call into the run-
time library for each compiler tested. The call is for computing an integer base
to an integer exponent. 12 An estimate of the additional assembler code for this
operation is roughly 50 instructions, increasing the assembler code for the
decode operation even more. No similar runtime calls were generated for the
encode operation.

In view of the preceding, it is apparent that the results presented in Table C-1 underestimate
the actual generated code size. What we consider interesting is the fact that the code to
perform the decode operation is roughly a factor of three times larger than the code to per-
form the encode operation.

122* (8 * Exponent-Size - 1).
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As an additional experiment, we compiled our routines using the Verdix SUN-3 to MC68020,
Version 6.0 cross compiler. We then tested the code on a 68020 processor that was
monitored by a Tektronix DAS9200 logic analyzer. For the special case of 0.0, both the
encode and decode routines ran in 26 microseconds. The results for all other tested real
numbers are summarized in Table C-2.

Function Execution Time

Encode 74 lisec

Decode 365 psec

Table C-2: Measured Execution Times for Encode/Decode Operations

In any system, there are tradeoffs between generality and performance. Frequently, the
more general a program is, the more computation it must perform. In our example, it ap-
pears that one pays a high price for the generality of ASN.1. These figures may well be of
concern in a real-time system. Sensor data, for example, frequently consists of multiple real
numbers. The receiver of such data would pay the decode overhead for each of the reals
sent.

Note that part of the complexity of our decode routine stems from the fact that the ASN.1
real representation is not normalized. That is, one cannot determine, based solely on the
number of octets of exponent and mantissa in the ASN.1 representation, whether a real is
representable or not on a given machine. Thus the mantissa must be processed, and then
the exponent computed, before it can be determined if the encoded real can be represented.
For example, 2.0 can be encoded with a mantissa of 1 and exponent of 1, or a mantissa of
10 (binary) and an exponent of -1, or a mantissa of 100 (binary) and an exponent of -2, etc.
There is no limit on the number of octets that can be used to represent the mantissa. Hence,
assuming a base of 2 and a scaling factor of 0, any negative exponent that can be
represented in an ASN.1 BER real representation can be a valid exponent for the number
2.0. Since ASN.1 BER allows up to 255 octets of exponent, this amounts to roughly 2 **
2039 different valid representations for 2.0. Note that this is not a problem for XDR, as the
XDR floating point representation is normalized.

Another problem we encountered is that ASN.1 does not provide an explicit indication of
precision for reals. As demonstrated earlier, there are a number of different representations
for each expressible real value. The ISO/IEC ASN.1 BER standard [3] states that the selec-
tion of a particular representation is at "... a sender's option, and can be used as a broad
indication of precision." There is, however, no way for the receiver to know if the sender is
using a particular representation as an indication of precision. This means that the receiver
(the decode routine) must have some understanding of the sender (the encode routine) to
properly interpret real data. This would require a protocol, which is beyond the scope of
ASN.1. Given the generality of ASN.1, we find this odd.

As an aside on the use of Ada, one might wonder if the use of Ada9X might not improve the
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encode and decode routines. Since Ada9X is not currently available, it is not possible to
obtain instruction counts. Ada9X will provide certain attribute functions and procedures for
floats, such as compose and decompose. While compose and decompose could make the
source code more readable, it is not clear that the generated object code would be more
efficient than that generated by Ada83.

50 CMU/SEI-93-TR-10



with system;

with uncheckedconversion;

package Target_DependentDefinitions is

-- Zxceptions

ASN1 Error : exception;
-- raised when the ASN.1 encoding cannot be decoded

-- Bit, Byte, and Word Declarations

subtype Bit is integer range 0. .1;

type Byte is range 0..16#77*;
for Byte' size use system,.storage unit;

Word : constant := 4;

-- The following declarations of bit arrays, byte arrays, and
"-- "special" integers are necessary as the Encode and Decode
-- routines need to examine octets, which sometimes need to be
-- treated as bits, while other times must be treated as
-- integers.

-- Declarations of arrays of Bit

type BitArray is array (0..7) of Bit;
for Bit Array' size use system. storage unit;

pragma pack (Bit Array);

type Word Bit Array is array (0..31) of Bit;
for Word Bit Array'size use 4*system.storageunit;

pragma pack (Word Bit Array);

-- Declarations of arrays of Byte

type Two Byte Array is array (0.-.1) of Byte;
for Two Byte Array'size use 2*system.storageunit;

pragma pack (TwLoByte Array) ;

type Four ByteArray is array (0..3) of Byte;
for Four Byte Array' size use 4*system.storage unit;

pragma pack (Four Byte Array);

-- Declarations of integers of "special" lengths for conversion
-- to and from bit and byte arrays

type TwoBytesnteger is new integer range 0..65535;
for Two Byte Integer'size use 2 *system.storage unit;
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type Four Byte Integer is new integer range 0.. system.m-a int;for Your Byte Integer' size use 4*system. storage unit;

-- Type Declarations for ASN.1 BHR Real (Binary Encoding)

type Encoding Header is
record

Code : integer range 0..1 :- 1;
Sign : integer range O..1;
Base : integer range 0..3 :- 0;
Scalingactor : integer range 0..3 : 0;
Length : integer range 0..3 :- 1;

end record;

for Encoding Header use
record at mod 2;

Code at O*Word range 0 .. 0;
Sign at O*Word range 1 .. 1;
Base at 0*Word range 2 .. 3;
ScalingFactor at O*Word range 4 .. 5;
Length at O*Word range 6 .. 7;

end record;
for EncodingHeader''SIZZ use system.storage unit;

type Contents Array is array (natural range <>) of Byte;

type Zncoding (n : natural) is
record

TotalLength : integer range 0..255;
Header E: Zncoding Header;
case n is

when 0 =>
null;

when others =>
Contents ContentsArray (1..n);

end case;
end record;

pragma pack (Encoding);

type ASKN Encoding is access Encoding;

-- Type Declarations for ZEEE floating points

Type ZEZE Float is
record

Sign : integer range O..1;
Exponent : integer range 0..255;
Mantissa : integer range 0..8388607;

end record;
pragma pack (IEEEFloat);
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for 1WX Float use
record at nod 2;

sign at O*Word range 0 0;
ExPonent at 0*Nord range 1. 8;
mantissa at 0'llord range 9 .. 31;

end record;

-- Unchecked Conversions necessary for Encode and Decode

function To -Two Byte Array is
now unchecked conversion (SOURCE => Two yteInteger,

TARGET => Two_ ByteýArray);

function To Four Byte Aray is
nov unc6hecked conversion (SOURCE => Yourý Byte IXnteger,

TARGET => Four lbyte Array);

function To Your Byte Integer is
new unchecked conversion (SOURCE => Four Byte Array,

TARGET => Four Byte Integer) ;

function To Bit Array Is
new unchecked conversion (SOURCE => Byte,

TARGET => Bit Array):
function ToBit Array is

new unchecked conversion (SOURCE -> Integer,
TARGET => Word Bit Array) ;

function To Bit Array is
new unchecked conversion (SOURCE -> Encoding Heiader,

TARGET => Bit Array):

function ToShort Float is
new unchecke~d conversion (SOURCE m> Word Bit Array,

TARGET => Short Float);

function To XEEE is
new unchecked conversion (SOURCE => Short Float,

TARGET => IEEEZ Float);

-- Global Declarations necessary for Encode and Decode routines

Zero Float Encoding :ASKI Encoding
:m new Encoding (n -> 0);

Single Float Encoding ASM1 Encoding
:- now Encoding (n => 5);

Zero Float Encoding ýLength constant -1;
SingleFloatEncoding Length constant :-6;
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-- binary ASX. 1 SM encoding
Single Float Code : constant : 1;

-- base 2 numbe

Single Float a3se : constant - 0;

Single FloatScalLng Factor : constant : 0;

-- 2 octets of exponent
Single Float Length : constant : 1;

-- Constants for the Mncode routine

-- For conversion from an 8 bit two's coa lemnt to a 16 bit
-- two's complement number, with a 23 bit shift Included. See
-- Notes section in Mncode.

Conversion Constant constant :- 32617;

-- r restoring the implied leading one missing from the X=EE
-- normalized float.

MantissamXPliedll I constant := 2 ** 23;

-- Constants for the Decode routine

-- Ziplementation limit on maximum length of an encoding which
-- will be accepted.

Maxim=m EncodingLength constant := 10;

-- Xoplemantation limit on maximum number of octets which will be
-- accepted.

Mazxi= Exponent Octets : constant : 4;

-- Number of bits in an octet.

BitsIn Octet : constant : 8;

-- Bit positions needed to extract the exponent mantissa from an
-- encoding to a Short Float.

Zito : constant : 0;
Bitl : constant : 1;
site : constant : 8;
Bit9 : constant :-9;
Bit24 : constant : 24;
Bit3l : constant : 31;

end Target Dependent Definitions;
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with Target Dependent Definitions;
use Target Dependent Definit ions;

procedure Zncode (Decoded Float : Short Float;

rncodedFloat : out ASN1_ncoding) is

-- Zncode an single Float in an s3. 1 representation using MME

-- Notes:
-- 1) The Short Float representation is normalized.
-- 2) 0.0 is a special case. The encoding contains no contents
-- octets. Only the sign bit in the header has meaning.
-- 3) The Short Float exponent is 8 bits in two's complement
-- notation. It is a "bias" representation. That is:
-- Short Float exponent = actual exponent + bias,
-- where, for the S bit representation, bias - 127.
-- 4) The Short Float mantissa is 23 bits of binary fraction.
-- The mantissa of the real number represented by the
-- Short Float is 1 greater than the Short Float's mantissa.
-- That is, if the Short Float stores a mantissa of
-- .2345
-- the mantissa of the real number represented by that
-- ShortFloat is :
-- 1.2345
-- 5) The AS£.1 exponent is represented in an integral number of
-- octets as a two's complement integer.
-- 6) The AS.1 mantissa is represented in an integral number of
-- octets as a binary integer (with all of its digits).
-- 7) Conversion of the Short Float to the As3.1 encoded
-- representation conceptually involves the following:
-- a) the conversion of the Short Float's mantissa to a binary
-- integer with its leading one restored. (i.e., add 1 and
-- multiply by 2 ** 23)

-- b) the conversion of the 8 bit two's complement
-- Short Float', exponent to the equivalent 16 bit two's
-- complement integer (necessary since the mantissa has
-- been multiplied by 2 ** 23, the exponent must be
-- decreased by 23, which could overflow in 8 bits.
-- 8) In practice, going from a two's complement exponent in 8
-- bits to a two's complement exponent in 16 bits requires a
-- change in bias from 127 to 32767 (i.e., add 32640).
-- Further the conversion of the mantissa from the IEE
-- normalized fraction of 23 bits to the ASN.1 mantissa as a
-- binary integer requires an adjustment of -23. Bence the
-- constant of 32617 (Conversion Constant).
-- 9) The 23 bit Short Float mantissa is converted to a 32 bit
-- (rather than a 27 bit) representation due to alignment
-- problems on the Sparc2.
-- 10) The only field in the encoding header that depends on
-- the particular Short Float being encoded is the sign. We
-- are always using the ASN.1 binary encoding (Code = 1), a
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-- base 2 number (Base m 0), a scaling factor of 0
-- (Scaling Factor = 0), and an exponent length of 2 octets
-- (Length - 1).

Single Float :EZJ Float;
TempR3P Two Byte_Integer : 0;
TejpTw•o Two ByteA rray;
Temp Mantissa : Four Byte_Integer;
Temp.-Four : Four Byte Array;

begin

Single Float :- To IEEZ (Decoded Float);

If Decoded Float - 0.0 then
Zero Float Encoding.Reader.Sigs : Single Float.Sign;
Encoded Float - Zero Float Encoding;
return;

end if;

-- Move the 8 bit exponent to a two byte integer representation

Temp Exp :- Two ByteInteger (Sinqle Float .Exponent) ;

-- Adjust for the conversion from an 8 bit two's comp~lennt to a
-- 16 bit two' a coMlemnt, and also for the 23 bit shift

TempExp :- Temp Exp + Conversion Constant;

-- Set the fields in the encoding header

Single Float Encoding. Header. Code
:- Single Float Code;

Single Float _ncoding. Header. Sign
:= Single Float.Sign;

Single Float _ncoding. Header. Base
:- Single Float Base;

Single Float _ncoding. Header. ScalingFactor
:- Single FloatScaling Factor;

Single Float zncoding. Header. Length

:- Single Float Length;

-- Store the converted exponent

Temp_Two := To Two BytesArray (Temp_Wxp);
Single Float Encoding.Contents(1) - Temp Two(0);
Single Float Encoding. Contents (2) :- Temp Two (1);
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-- Convert the mantissa from the 23 bit normalized fraction to a

-- binary integer

Temp_mantissa :- Four_Byte_Integer (SLngle rloat .Mantiasa);

-- Add 1 to the mantissa

if SingleFloat.Exponent > 0 then
TempMantissa := Temp_Mantissa + Mantisss_Implied 1;

end if;

-- Store the converted mantissa

Temp Four : ToFour Byte_Array (Temp_Mantissa);
for i in 1 3 loop

Single Float_Zncoding.Contents (1+2) :- TempFour (i);
end loop;

EncodedFloat : Single Float_Encoding;

end Encode;
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with Target DependentDefinitions;
use Target Dependent Definit ions;

procedure Decode (Encoded Float : 151_Encoding;

DecodedFloat : out ShozrFloat) is

-- Decode an ASN.A REAL representation (using BER) to a Float

-- Notes:
-- 1) 0.0 is a special case, represented in the encoding by zero
-- octets of contents.
-- 2) The ASN.. representation for reals is not normalized. The
-- encoder of a real may use up to 255 octets to represent
-- the exponent, and an unlimited number of octets to
-- represent the mantissa. Hence it is not possible to deduce
-- whether an encoded real is representable or not on a given
-- machine without first decoding it. For example, 2.0 can be
-- encoded with a mantissa of I and exponent of 1, or a
-- mantissa of 10 (binary) and an exponent of -1, or a
-- mantissa of 100 (binary) and an exponent of -2, etc.
-- 3) For our purposes we have limited the total encoding sizes
-- to 10 octets, and the maximum exponent size to 4.
-- 4) 151.1 allows for base 2 (Header.Base - 0), base 8
-- (Header.Base - 1), and base 16 (Header.Base - 2) numbers.
-- 5) 1-1.1 encodes the exponent in a series of octets that
-- follow the header. The Length field in the header
-- specifies the number of octets in that encoding. If
-- Header.Length is 0, there is 1 octet of exponent; if 1,
-- there are 2 octets of exponent; if 2, there are 3 octets
-- of exponent; if 3, the first octet contains the number of
-- following octets that contain the exponent (up to 255
-- octets). Any remaining octets contain the mantissa.
-- 6) The 181.1 exponent is stored as a two's complement binary
- - number.
-- 7) The 15.1 mantissa is stored as a binary integer.
-- 8) Since there is no restriction on the number of octets in
-- the mantissa, one must search the stored mantissa from
-- high-order bit to low-order bit to find the first one bit
-- (i.e., drop the leading zeros). Since the Sparc2
-- Short Float is normalized, that first bit will not be
-- stored in the decoded float. The 23 bits following the
-- first one bit will be moved into the mantissa field of the
-- decoded float. Since the 1SN.1 representation does not
-- contain an explicit indication of precision (i.e., the
-- number of significant digits in the mantissa), the Decode
-- routine can do no more.
-- 9) The position of the first one bit in the mantissa together
-- with the number of octets that contain the mantissa
-- indicate the size of the real number being represented.
-- Since the decoded float is normalized, the exponent to be
-- stored in the decoded float must be adjusted accordingly.
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-- 10) Based on note 8), notice that the encoded float cannot be
-- determined to be unrepresentable on the target machine
-- (the Sparc2 in this case) until after the calculation of
-- the encoded float's exponent.

Base : integer : 1;
ExponentSize : integer :- 0;
TempEXP : Four ByteInteger : 0;
Tempyour : Four:ByteArray := (others -> 16#0# );
Index : natural : 0;
BitIndex : natural : 0;
Tenp_Bits : BitArray :- (others -> 0);
TempFloat : Word Bit Array (others -> 0);
FirstOne Bit : integer : 0;
Actual Exp : integer :- 0;
Temp BitArray : Word Bit Array : (others -> 0);

function Test First Bit (ByteToTest : Byte;
Bit Value : Bit)

return boolean is
Temp_BitArray : BitArray;

begin
TempBit Array := ToBitArray (Byte ToTest);
return (Temp_BitArray (BitO) - BitValue);

end TestFirst_Bit;

begin

Temp_Float (0) :- EncodedFloat.Header.Sign;

if Encoded Float .n - 0 then
Decoded Float :- ToShortFloat (Temp_Float);
return;

end if;

if EncodedFloat .TotalLength > Maximum_Encoding_Length then
raise ASNIError;

end if;

case Encoded Float.Header.Base is
when 0 =>

Base : 1;
when 1 >

Base : 3;
when 2 =>

Base := 4;
when 3 =>

raise ASNlError;
end case;
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-- xtzract the exponent octets from the encoded float

Teu Fouz :- (others -> 16#0#);
if Zncoded Float .Reader.Length < 3 then

ExponontSize :- Encoded Float. Header. Length + 1;
for i in 1 .. Zxponent_Size loop

TewW Your (i+3-Exponent_Size) : EncodedFloat. Contents (i);
end loop;

else
ExponentSize :- integer (ncoded Float. Contents (1));
if ExponentSize > Maximum_ExponentOctets then

raise ASNIError;
end if;
if Encoded Float.Contents(2) - 16#0# then

-- test first bit of next octet. if is 0, error
if Test FirstBit (Encoded Float.Contents(2), 0) then

raise .ASN.irror;
end if;

elsif Encoded Float.Contents(2) - 16#FF# then
-- test first bit of next octet. if is 1, error
if Test First Bit (Encoded Float.Contents(2), 1) then

raise ASN•_Error;
end if;

end if;
for i in I .. ExponentSize loop

Teup_Four (i+3-Exponent_Size)
:- Encoded Float.Contents (1+i);

end loop;
end if;
TewV_Exp : To Four Byte Integer (TempFour);

-- Find first word in mantissa which contains a non zero bit.

index :- ExponentSize + 1;
while not (index > Encoded Float.n) loop

if Encoded Float.Contents(index) - 16#0# then
index :- index + 1;

else
exit;

end if;
end loop;

-- Find the first one bit in the first nonzero byte of the ASN. 1
-- mantissa representation.
-- Determine its position in the mantissa (i.e., compute
-- FirstOneBit).
-- Slice the 23 bits following the first one bit into the decoded
-- float's mantissa field.

if index > Encoded Float.n then
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-- have a mantissa of 0
null;

else
Temp_Bits := To_BitArray (EncodedFloat.Contents(Index));
Bit Index :m 0;
while Temp_Bits (BitIndex) = 0 loop

Bit Index :- BitIndex + 1;
end loop;

FirstOneBit BitcIn_Octet * (EncodedFloat.n - Index)

+ 7 - Bit-Index;

BitIndex :- BitIndex + 1;

for i in Bit9 .. Bit3l loop
if Bit Index > 7 then

Index := Index + 1;
Tenp_Bits

:= ToBitArray (EncodedFloat. Contents (Index));
Bit Index := 0;

end if;
Temp_Float(i) := Temp_Bits (Bit_Index);
BitIndex := BitIndex + 1;

end loop;
end if;

-- Compute the actual value of the exponent

ActualExp := Base * integer(Temp_Exp)
"+ EncodedFloat. Header. Scaling_Factor
"+ First One Bit
- (Base-* (2 **(8 * Exponent-Size - 1) - 1));

-- If the actual value of the exponent is representable on the
-- target machine (in this case, the Sparc2), convert the value
-- to two's complement and store it in the decoded float.

if Actual Exp > Short Float' Machine Emax or
Actual Exp < ShortFloat'MachineEmin then
raise ASNlError;

else
ActualExp := ActualExp + 127;
Temp_Bit_Array := To Bit_Array (ActualExp);
Temp_Float (Bitl..Bit8) := Tempn_BitArray (Bit24..Bit3l);

end if;

DecodedFloat := To-ShortFloat (Temp_Float);

end Decode;
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with Decode;
with Encode;
with Target Dependent Definitions;

use TargetDependentDefinitions;
with text io;
with unchecked conversion;

procedure Driver is

-- Declarations

begin

-- Initialize the Encoding areas

-- Get the float to test

-- Encode the float to test

-- Dump Encoding

-- Decode the created encoding

-- Display the original float

-- Display the resulting float

end Driver;
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